SPECIFICATIONS

WF120BD03/04 4¾" die cast, paper-cone mid/woofers, 4/8 ohm

The 4¾" transducers WF120BD03 (4 ohm) and WF120BD04 (8 ohm) were designed as high performance bass and midrange units for very compact monitors and high-end hi-fi speakers.

FEATURES

- Balanced Drive motor structure for optimal drive force symmetry resulting in largely reduced even order harmonic distortion
- Copper cap on center pole to reduce voice coil inductance and to minimize variations in voice coil inductance as a function of voice coil position
- Black coated semi-air-dried paper cone
- Rigid die cast alu chassis with extensive venting for lower air flow speed reducing audible distortion
- · Vented voice coil former for reduced distortion and compression
- Vented center pole with dual flares for reduced noise level at large cone excursions
- Heavy-duty black fiber glass voice coil former to reduce mechanical losses resulting in better dynamic performance and low-level details
- Large motor with 11/4" voice coil diameter for better control and power handling
- Built-in alu field-stabilizing ring for reduced distortion at high levels
- Low-loss suspension (high Qm) for better reproduction of details and dynamics
- · Black motor parts for better heat transfer to the surrounding air
- · Conex spider for better durability under extreme conditions
- Gold plated terminals to ensure long-term trouble free connection

PRELIMINARY NOMINAL SPECIFICATIONS

		WF120BD03		WF120BD04		
Notes	Parameter	Before	After	Before	After	Unit
		burn-in	burn-in	burn-in	burn-in	
	Nominal size	4	3/4	4¾		[inch.]
	Nominal impedance		4 8		[ohm]	
	Recommended max. upper frequency limit	4 4		4	[kHz]	
1	Sensitivity, 2.83V/1m (average SPL in range 300 - 1,000 Hz)	84.5		81.5		[dB]
2	Power handling, short term, IEC 268-5, no additional filtering					[W]
2	Power handling, long term, IEC 268-5, no additional filtering					[W]
2	Power handling, continuous, IEC 268-5, no additional filtering	60		60		[W]
	Effective radiating area, S _d	5	52	5	2	[cm²]
3	Resonance frequency (free air, no baffle), F _S	43		45		[Hz]
	Moving mass, incl. air (free air, no baffle), Mms	9	.3	8	.7	[g]
3	Force factor, Bxl	4.9		6.0		[N/A]
3	Suspension compliance, C _{ms}	1.47		1.47		[mm/N]
3	Equivalent air volume, Vas	5.6		5.6		[lit.]
3	Mechanical Q, Q _{ms}	7		7		[-]
3	Electrical Q, Qes	0.33		0.43		[-]
3	Total Q, Qts	0.32		0.40		[-]
4	Voice coil resistance, RDC	3.2		6.3		[ohm]
5	Voice coil inductance, Le (measured at 10 kHz)	0.12 32 12		0.20		[mH]
	Voice coil inside diameter			32		[mm]
	Voice coil winding height			12		[mm]
	Air gap height	4		4		[mm]
	Magnet weight	370		370		[g]
	Total unit net weight excl. packaging	1	.0	1	.0	[kg]
3, 5	K _{rm}	26		41		[mohm]
3, 5	Erm	0.48		0.47		[-]
3, 5	K _X m	420		370		[mH]
3, 5	E _{xm}	0.	13	0.	20	[-]

Note 1 Measured in infinite baffle.

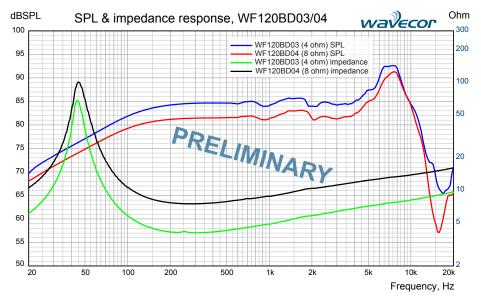
Note 2 Tested in free air (no cabinet).

Note 3 Measured using a semi-constant current source, nominal level 2 mA.

Note 4 Measured at 20 deg. C

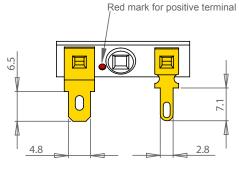
Note 5 It is generally a rough simplification to assume that loudspeaker transducer voice coils exhibit the characteristics of an inductor. Instead it is a far more accurate approach to use the more advanced model often referred to as the "Wright empirical model", also used in LEAP-4 as the TSL model (www.linearx.com), involving parameters K_{TM}, E_{TM}, K_{XM}, and E_{XM}. This more accurate transducer model is described in a technical paper here at our web site.

Note 6 After burn-in specifications are measured 12 hours after exiting the transducer by a 20 Hz sine wave for 2 hours at level 7.75/11 VRMS (4/8 ohm version). The unit is not burned in before shipping.


Specifications are subject to change without any further notice. Copyright © 2010 by Wavecor Ltd., Guangzhou, China. All rights reserved. Wavecor® is a registered trademark of Wavecor Ltd. For more information please visit **www.Wavecor.com**

SPECIFICATIONS

WF120BD03/04 4¾" die cast, paper-cone mid/woofers, 4/8 ohm



Measuring conditions, SPL
Driver mounting: Flush in infinite
baffle, back side open (no cabinet)
Microphone distance: 1.0 m
Input level: 2.83 V_{RMS}
Smoothing: 1/6 oct.

Measuring conditions, impedance Driver mounting: Free air, no baffle, back side open (no cabinet) Input signal: Semi-current-drive, nominal current 2 mA Smoothing: None

OUTLINE DRAWING (nominal dimensions, mm)

CONNECTIONS

Thickness, both terminals: 0.5 mm Terminal plating: Gold

PACKAGING AND ORDERING INFORMATION

Part no. WF120BD03-01	4 ohm version, individual packaging (one piece per box)		
Part no. WF120BD03-02	4 ohm version, bulk packaging		
Part no. WF120BD04-01	8 ohm version, individual packaging (one piece per box)		
Part no. WF120BD04-02	8 ohm version, bulk packaging		

Latest update: Mar. 28, 2010

Specifications are subject to change without any further notice. Copyright © 2010 by Wavecor Ltd., Guangzhou, China. All rights reserved. Wavecor® is a registered trademark of Wavecor Ltd. For more information please visit **www.Wavecor.com**