SPECIFICATIONS

SW215WA01 8¹/₂" paper cone subwoofer, 4 ohm

 $8\frac{1}{2}$ " High Performance Steel Frame Subwoofer Unit. Suitable for dedicated subwoofer applications and as low frequency transducers in $2\frac{1}{2}$ -, 3- and multi-way speaker systems.

FEATURES

- Balanced Drive motor structure for optimal drive force symmetry resulting in largely reduced even order harmonic distortion
- Large linear stroke, ensuring low distortion at high output levels
- Rigid air-dried paper cone to ensure piston motion even at high levels for reduced distortion
- Rigid steel chassis with extensive venting for lower air flow speed reducing audible distortion
- · Vented center pole with dual flares for reduced noise level at large cone excursions
- Heavy-duty fiber glass voice coil former to reduce mechanical losses resulting in better dynamic performance and low-level details
- Large motor structure for better control and power handling
- Built-in alu field-stabilizing ring for reduced distortion at high levels
- Low-loss suspension (high Qm) for better reproduction of details and dynamics
- · Black plated motor parts for better heat transfer to the surrounding air
- Conex spider for better durability under extreme conditions
- Gold plated terminals to ensure long-term trouble free connection
- Delivered with foam gasket attached for hassle-free mounting and secure cabinet sealing

NOMINAL SPECIFICATIONS

Notes	Parameter	Before burn-in	After burn-in	Unit
	Nominal size	8	81/2	
	Nominal impedance		4 500	
	Recommended max. upper frequency limit	5		
1, 3	Sensitivity, 2.83V/1m (calculated from T/S parameters)	8	89	
2	Power handling, short term, IEC 268-5, no additional filtering			
2	Power handling, long term, IEC 268-5, no additional filtering			
2	Power handling, continuous, IEC 268-5, no additional filtering	1	100	
	Effective radiating area, Sd	2	206	
3, 6	Resonance frequency (free air, no baffle), Fs	32		[Hz]
	Moving mass, incl. air (free air, no baffle), Mms	5	53	
3	Force factor, Bxl	8	8.4	
3, 6	Suspension compliance, Cms	0.46		[mm/N]
3, 6	Equivalent air volume, Vas	27.7		[lit.]
3, 6	Mechanical resistance, R _{ms}	0.89		[Ns/m]
3, 6	Mechanical Q, Q _{ms}	12		[-]
3, 6	Electrical Q, Q _{es}	0.49		[-]
3, 6	Total Q, Qts	0.47		[-]
4	Voice coil resistance, RDC	3	3.2	
5	Voice coil inductance, Le (measured at 1 kHz)	1	1.2	
	Voice coil inside diameter	3	39	
	Voice coil winding height	2	25	
	Air gap height		5	
	Theoretical linear motor stroke, Xmax	±	±10	
	Magnet weight			[g]
	Total unit net weight excl. packaging	2	2.4	
3, 5	K _{rm}	7	7.0	
3, 5	Erm	0.	0.68	
3, 5	K _{xm}	6	6.9	
3, 5	Exm	0.	78	[-]

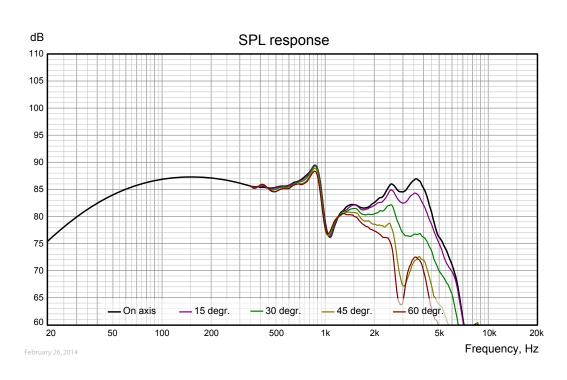
Note 1 Measured in infinite baffle.

- Note 2 Tested in free air (no cabinet).
- Note 3 Measured using a semi-constant current source, nominal level 2 mA.

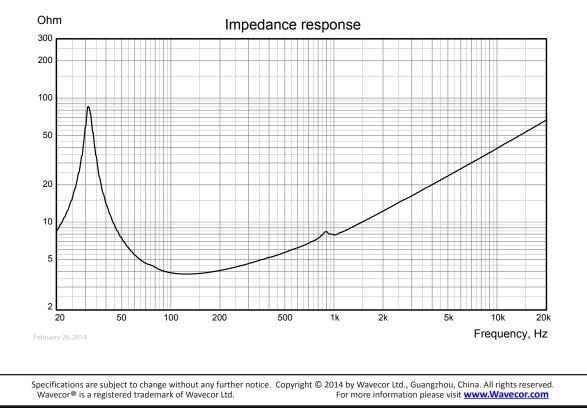
Note 4 Measured at 25 deg. C

Note 5 It is generally a rough simplification to assume that loudspeaker transducer voice coils exhibit the characteristics of an inductor. Instead it is a far more accurate approach to use the more advanced model often referred to as the "Wright empirical model", also used in LEAP-4 as the TSL model (www.linearx.com), involving parameters K_{rm}, E_{rm}, K_{xm}, and E_{xm}. This more accurate transducer model is described in a technical paper <u>here at our web site</u>.

Note 6 After burn-in specifications are measured 12 hours after exiting the transducer by a 20 Hz sine wave for 2 hours at level 10 V_{RMS}. The unit is not burned in before shipping.


Specifications are subject to change without any further notice. Copyright © 2014 by Wavecor Ltd., Guangzhou, China. All rights reserved. Wavecor® is a registered trademark of Wavecor Ltd. For more information please visit <u>www.Wavecor.com</u>

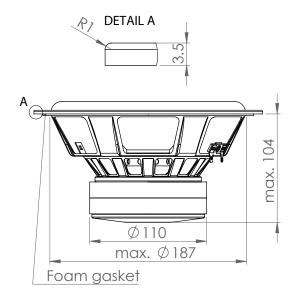
SPECIFICATIONS

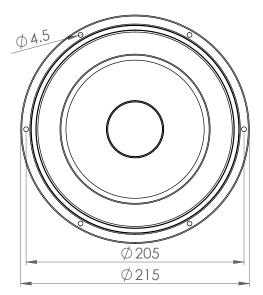


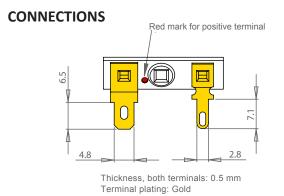
SW215WA01 8½" paper cone subwoofer, 4 ohm

Measuring conditions, SPL Driver mounting: Flush in infinite baffle, back side open (no cabinet) Microphone distance: 1.0 m Input signal: 2.83 VRMS stepped sine wave Smoothing: 1/6 oct.

Measuring conditions, impedance Driver mounting: Free air, no baffle, back side open (no cabinet) Input signal: Stepped sine wave, semicurrent-drive, nominal current 2 mA Smoothing: None




SPECIFICATIONS


OUTLINE DRAWING (nominal dimensions)

Dimensions in mm

March 5, 2014

PACKAGING AND ORDERING INFORMATION

Part no. SW215WA01-01 4 ohm version, individual packaging (one piece per box)

Latest update: Mar. 6, 2014

Specifications are subject to change without any further notice. Copyright © 2014 by Wavecor Ltd., Guangzhou, China. All rights reserved. Wavecor® is a registered trademark of Wavecor Ltd. For more information please visit <u>www.Wavecor.com</u>